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Phase II monitoring of variability using Cusum and EWMA charts with
individual observations

John Lawson

Department of Statistics, Brigham Young University, Provo, Utah

ABSTRACT
When monitoring a process mean in Phase II, it is well known that time-weighted control
charts (such as the Cusum or EWMA) of individual observations are more sensitive for
detecting small mean changes than are the traditional Shewhart control charts for individu-
als. Further, by collecting one observation every 12minutes, rather than a subgroup of five
every hour, the time-weighted charts of individual values result in a shorter ATS (average
time to signal) than would be possible using Shewhart charts of subgrouped data. This art-
icle explores a similar strategy of monitoring process variability using time-weighted control
charts and individual observations. The average time to signal a change in variability using
these charts is studied when there are targets or known values for the in-control process
mean and standard deviation. The results show that the ATS of both the Cusum and EWMA
are substantially shorter than the ATS for the standard R charts or the more efficient S2

chart using subgroups of 5. The article also describes how the control limits for the EWMA
chart to monitor process variability should be modified if the in-control process mean and
standard deviations are unknown and must be estimated from a Phase I study. Computer
functions that are available in R packages for creating Cusum-EWMA charts and computing
their ARL (average run length) are demonstrated in this study and are included in
the appendix.
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Introduction

In his transformative book “Out of the Crisis,”
Deming (1986) describes several advantages to having
a production process in a state of statistical control.
Some of the advantages he mentions include 1) the
predictability of process performance and cost, 2)
smaller inventories of parts required, 3) maximum
productivity and minimum costs, 4) improved rela-
tionships with customers, and 5) quicker and more
reliable detection of unintentional process changes.

Montgomery (2013) echoed some of the same sen-
timent when he said, “If a product is to meet or
exceed customer expectations, generally it should be
produced by a process that is stable and repeatable”
(p. 188). Deming (1986) went on to say that, “A con-
trol chart can … be used to attain and maintain stat-
istical control during production” (p. 337), and “once
a process has been brought into a state of statistical
control, it has definable capability” (p. 339).

To attain and maintain statistical control, control
charts are used in two different situations called Phase

I and Phase II, as explained by Montgomery (2013).
In Phase I, retrospective data are collected and ana-
lyzed to construct trial control limits and determine
whether the process was in-control during the time
the retrospective data was collected. If the process was
not in-control during this period, Shewhart control
charts assist personnel in identifying the assignable
causes for out-of-control signals. If these causes can
be removed, then the associated retrospective data can
then be eliminated and revised control limits calcu-
lated. New data can then be collected and plotted
against revised control limits to verify that the process
is now in-control. This is often an iterative process.
For more discussion of Phase I control chart usage,
see Champ and Chou (2003).

The use of control charts in Phase II is different; in
this phase statistical control is maintained by monitor-
ing ongoing data on a control chart based on the in-
control process mean and standard deviation esti-
mated in Phase I. As explained by Montgomery
(2013), most of the large sources of variability are
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eliminated in Phase I. Therefore, the control charts
used in Phase II should be more sensitive to small
process shifts. It is well known that a time-weighted
control chart of subgroup means (like the Cusum or
EWMA) is more sensitive for detecting small shifts in
the mean than the �X chart. Likewise, Chang and Gan
(1995), Ncube and Li (1999), Crowder and Hamilton
(1992) and Castagliola (2005) showed that Cusum or
EWMA charts of subgroup variances s2, or the log(s2),
are more sensitive to detecting small shifts in the pro-
cess standard deviation than the Shewhart S2 chart.
Castagliola, Celano, and Fichera (2006) also give a
review of EWMA charts for monitoring process vari-
ance. It is also known that the standard R chart is
even less sensitive than the S2 chart for monitoring
the process variance.

Once control charts have been used to maintain a
process in a state of statistical control, the process
capability can be determined. In Ford Motor
Company’s guide to the use of control charts for
improving company and supplier quality and product-
ivity (Corporate Quality Education and Training
Center Ford Motor Company 1987), it advocates pro-
cess capability, as measured by Cpk, be � 1:00 across
the board. In addition, that Cpk � 1:33 for new proc-
esses affecting control items or other significant prod-
uct characteristics.

The Manual for Good Practices (ASQC Chemical
and Process Industries Division Chemical Interest
Committee 1987) states “Values of Cp exceeding 1.33
indicate the process is adequate to meet the customer
specifications. Values of Cp between 1.33 and 1.00
indicate that the process, while adequate to meet spec-
ifications, will require close control. Values of Cp
below 1.00 indicate that the process is not adequate to
meet the specifications and that the process and/or
specifications must be changed” (p. 37).

When the process mean is centered between the
specification limits and Cp ¼ Cpk ¼ 1:33, a shift in
the mean by 1.33 standard deviations to the left or
right will result in Cpk decreasing to 0:89<1:00.
Likewise, a 50 percent increase in the process standard
deviation will decrease Cpk from 1.33 to 0.89.
Therefore, when monitoring the process mean and
standard deviation in Phase II, the method used
should be able to quickly detect small shifts in the
mean by 1.33 standard deviations or more and small
increases in the process standard deviation by 50 per-
cent or more.

Control charts of individual observations rather
than subgroup means are often used in Phase II for
monitoring and controlling the process mean. This is

because there is no need to re-estimate the process
standard deviation (used to calculate the control limits
for the mean) from subgroups of data in Phase II
when it is already known or has been estimated from
Phase I data. Therefore, individual values rather than
subgroups of data may be used in Phase II. In add-
ition, if the cost to take a subgroup of five measure-
ments is no different than the cost to take five
individual measurements over time, then it would be
better (e.g.) to take one measurement every
12minutes rather than a subgroup of five measure-
ments every hour. In that way, any shift in the mean
will be detected more quickly. When using individual
observations, time-weighted control charts like the
Cusum or EWMA are more sensitive for detecting
small shifts in the mean than Shewhart individu-
al’s charts.

However, if individual observations rather than
subgroups of data are collected for Phase II monitor-
ing to detect small changes in the process mean, then
a standard Shewhart chart like the R chart or the
more efficient S chart, which is based on subgrouped
data, cannot be used to monitor the process standard
deviation. In this situation, a control chart for detect-
ing changes in the process standard deviation based
on individual values would be useful.

When the process characteristic (x) to be moni-
tored is normally distributed and its “in-control”
mean (l) and standard deviation (r) are known,
Hawkins (1981, 1993) advocates monitoring the indi-
vidual values in Eq. [1] with a Cusum chart to detect
changes in the process standard deviation.

vi ¼
ffiffiffiffiffiffijyij

p �0:822179
0:3491508

; [1]

where yi ¼ ðxi�lÞ=r is the standardized process
characteristic.

Hawkins (1981) showed that the statistic
ffiffiffiffiffiffijyij

p
defined in Eq. [1] has an expected value equal to
0.822179 and standard deviation equal to .3491508
when the “in-control” mean and standard deviation of
the process characteristic (xi) are known. Therefore vi
has mean zero and standard deviation one. In add-
ition, he showed the distribution of vi is approxi-
mately normal when xi has a normal or a symmetric
heavy tailed distribution.

Table 1. Expected value of
ffiffiffiffiffiffijyij

p
and vi as function of c.

% Change in r c E½ ffiffiffiffiffiffijyij
p � EðviÞ

�20 0.8 0.735379 �0.24860
0 1.0 0.822179 0.00
50 1.5 1.006960 0.52923
70 1.7 1.071990 0.71548
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If the standard deviation of the process characteris-
tic xi increases by a multiplicative factor c, then the
standard deviation of the standardized value yi ¼
ðxi�lÞ=r increases to c, and the expected values offfiffiffiffiffiffijyij
p

and vi will correspondingly increase.
If yi follows a normal distribution with mean zero

and its standard deviation has increases from 1 to c,
the expected value of

ffiffiffiffiffiffijyij
p

can be found as shown in
Eq. [2].

E
ffiffiffiffiffiffi
jyij

ph i
¼ 1

c
ffiffiffiffiffi
2p

p
ð1
�1

ffiffiffiffiffiffi
jyij

p
exp

�y2

2c2

� �
dy; [2]

Using numerical integration, the expected values offfiffiffiffiffiffijyij
p

and vi for four possible values of c were found
and are shown in Table 1.

Therefore, a 50 percent increase in the process
standard deviation will result in a 0.592298 standard
deviation increase in the mean of vi, since vi has
mean zero and standard deviation one when the pro-
cess mean and standard deviation have not changed.
Based on this relationship between the mean of vi and
the process standard deviation, Hawkins proposed to
monitor individual values of vi with a Cusum chart to
detect small shifts (on the order of 50 percent) in the
process standard deviation.

He approximated the average run length (ARL) for
detecting changes from a known in-control value of
the process standard deviation with a Cusum chart of
vi using simulations of 1000 sets of random data. He
also showed, with one set of simulated data, that the
Cusum chart reduced the number of observations to
detect a 53 percent increase in the process standard
by 9.2 percent compared to an R chart with subgroups
of size 5. This result cannot be generalized from one
set of random data. Additionally, he did not discuss
the situation in which the in-control process standard
deviation is estimated from Phase I data.

Although the performance of Cusum charts
(including accurate tables of ARLs) for monitoring the
process mean with individual values has been well
studied, the literature still lacks an in depth study of
the performance of the Cusum or EWMA chart of vi
for monitoring the process standard deviation with
individual values. For that reason, I will focus on the
ARL and ATS (average time to signal) of Cusum and
EWMA charts for monitoring vi for changes in the
process standard deviation. Specifically, this article
shows a more accurate method of computing the ATS
of Hawkins’s Cusum chart of vi and a nearly equiva-
lent EWMA chart of vi. It also compares the ATS for
the Cusum and EWMA chart of vi to the ATS of the
R chart and S2 chart with subgroups of size 5. It

discusses the problem with computed ATS values
when the in-control standard deviation is unknown.
Finally, it demonstrates a method for adjusting the
control limit multiplier for a EWMA chart of vi to
guarantee a target ATS when the in-control standard
deviation is estimated from Phase I.

The rest of the article is organized as follows. The
next section defines Hawkins (1981)’s Cusum chart
for monitoring process variability with individual val-
ues and compares his simulated ARL values to more
accurately computed values. The performance of this
Cusum chart is then compared to the R and S2 charts
based on subgrouped data. The following section
compares performance of a similar EWMA chart of
individual values for monitoring the process variability
to the Cusum chart. Examples are given, and the final
section shows how the control limits of the EWMA
should be adjusted if the in-control process mean and
standard deviation are estimated from a Phase I study.

Comparison of simulated and actual ARL of a
Cusum chart of individual observations of vi

The Cusum chart that Hawkins (1981) recommends
for monitoring the process standard deviation is
defined by Eqs. [2] and [3].

Cþ
i ¼ max 0; vi�kþ Cþ

i�1

� �
[3]

C�
i ¼ max 0;�k�vi þ C�

i�1

� �
; [4]

where Cþ
0 ¼ 0, and C�

0 ¼ 0. The Cusum with refer-
ence value k =.25 will provide good ARL properties
for detecting a one-half standard deviation increase in
the mean of vi.

The mean of
ffiffiffiffiffiffijyij

p
and vi not only change when

the process standard deviation changes, but they will
also change if the process mean (l) changes. In add-
ition, if the process standard deviation (r) increases,
not only do the means of

ffiffiffiffiffiffijyij
p

and vi increase, but
the chart for monitoring the mean is also sensitive to
this kind of shift, in the same way that the �X chart is
sensitive to an increase in the process stand-
ard deviation.

For this reason, Hawkins (1993) recommends keep-
ing a Cusum chart of individual values yi together
with a Cusum chart of vi when monitoring individual
values in Phase II. Using both charts simultaneously
in this way changes the false alarm rate, and the
increased sensitivity doesn’t come free. However
Hawkins (1993) showed that if the process standard
deviation increases, the Cusum chart for yi used for
monitoring the process mean may briefly cross its
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control or decision limit (h), but that the Cusum for
vi will cross and stay above its control or decision
limit. Therefore, the pattern on the two charts viewed
together will help identify a potential false alarm on
the chart for the process mean.

Hawkins (1981) approximated the ARL for detect-
ing various values of the percent change in the stand-
ard deviation of xi by simulating 1000 Cusums of vi
(with k =.25, and control or decision limit h¼ 6).
More accurate values of the ARL can be obtained by
numerically solving the ARL integral equation. This
numerical solution has been incorporated into the
xcusum.arl function in the R package spc
(Knoth 2017).

Table 2 compares the ARL values obtained by xcu-
sum.arl and the approximate ARL values obtained by
Hawkins’ simulations. The R code is shown in
the appendix.

Hawkins (1993) compared an R chart with sub-
groups of size 5 to a Cusum chart of individual values
of vi with respect to their ability to detect a 53 percent
increase in the process standard deviation. He found
the Cusum reduced the number of observations
needed to detect the increase by 9.2 percent. However,
this comparison was made with only one set of simu-
lated data and can’t be generalized. In the next sub-
section, I make a more general comparison between
the Cusum chart of individual values of vi and the
Shewhart R chart and S2-chart of subgrouped data
with respect to their ARL and their ATS for detecting
an increase or a decrease in process variability. All the
ARL and comparisons in this article are based on the
assumption that the original data are normally
distributed.

Comparing performance of Cusum charts of
individual values of vi to R and S2 charts for
Phase II monitoring of process variability

The average run length (ARL) is the average or
expected number of samples before a control chart
produces an out-of-control signal. It is often used to
compare the performance of different types of control
charts. However, when comparing a control chart
based on individual values to a control chart based on
subgroup statistics, the ARL is not a proper measure
to compare the charts. The control chart based on
individual values would have a smaller time interval
between samples than a chart based on subgroups
when both charts have the same number of observa-
tions per unit of time. Therefore, the charts should be
compared based on the ATS rather than ARL. The

steady state ATS is a function of the steady state ARL
that is given by ATS = (ARL � 0.5)�t, where t is the
time between samples.

The ATS1 = (ARL1 � 0.5)�t is the average time to
signal when the process has shifted from the control
state and is a measure of how quickly a control chart
can detect process shifts. ATS1 is positively related to
the ATS0 or the average time to signal when the pro-
cess is in the control state. Therefore, to make a fair
comparison of ATS1 values between different control
charts, their ATS0 values should be equal.

When the in-control process standard deviation (r)
is known, the upper control limit for an R chart (of
the standardized process characteristic yi) that is fre-
quently used in practice for monitoring the process
standard deviation in Phase II is

UCL ¼ d2 nð Þ � D4 nð Þ � r; [5]

where d2ðnÞ and D4ðnÞ are taken from the Appendix
D Table of Factors for Control Charts in Christensen,
Coombs-Betz, and Stein (2013) or Montgomery
(2013). The lower control limit is zero unless the sub-
group sizes are greater than 6.

Assuming independent subgroups of size n, the
ARL for an R chart (in the in-control or out-of-con-
trol state) can be determined from the mean of the
geometric distribution: ARL = 1=ð1�bÞ, where b is
the probability of the range Ri falling between zero
and the upper control limit given in Eq. [5]. The
probability of a signal is ð1�bÞ. b can be calculated
using the oc.curves.R function in the R package qcc
(Scrucca 2017) based on the conventional assumption
that the distribution of the observations is normal.
The R code for doing this is shown in the appendix.

Table 2. Comparison of calculated and simulated ARL’s.
ARL From

ARL from Hawkins’
% Change in r EðviÞ cusum.arl simulations

�20 �0.24860 50.64 61
þ50 0.592298 19.38 17
þ70 0.715482 13.13 12

Table 3. Perfomance comparison of R, S2 and Cusum charts
of individual values of vi for detecting changes in the process
standard deviation.

Cusum
Performance % Change R S2 k ¼.25

Measure in r (n¼ 5) (n¼ 5) h¼ 8.117839
ARL �20 1 63.1 80.29
ATS �20 1 315.3 80.29
ARL 0 217.3 74.5 370
ATS 0 1084 370 370
ARL þ50 7.198 5.594 20.29
ATS þ50 35.99 27.97 20.29
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The ARL for an S2 chart can be determined from
the fact that when the process is in-control, and the
process measurement is normally distributed with
variance r2, then ðn�1Þs2=r2, where s2 is sample vari-
ance of a subgroup of n follows a Chi-square distribu-
tion with n� 1 degrees of freedom. Probability
control limits for the S2 chart can be determined from
the percentiles of the Chi-square distribution, and the
Chi-square distribution is used to calculate the prob-
ability of an out-of control signal.

The ATS for comparing the the R and S2 charts to a
chart based on individual observations is then calculated
as ATS = (ARL � 0.5)�t, where t is the time between
subgroup samples expressed as a multiple of the time
between individual samples for the chart based on indi-
viduals. For example, if one subgroup sample was taken
every hour for the R or S2 chart and one individual
sample was taken every 12minutes for the chart based
on individual values, then t¼ 5.

The ARL and ATS of the R and S2 charts based on
subgroups of size n¼ 5 are compared to the ARL and
ATS of Cusum charts of individual values of vi in
Table 3. The steady state ARL of the Cusum charts
was calculated with the xcusum.ad function in the R
package spc.

In Table 3, the Cusum charts used a small value of
k =.25 to be sensitive to detecting small changes in
the mean of vi or standard deviation of yi. The value
of the control limit (or decision limit h) for the
Cusum charts was chosen to produce the same ATS0
as the S2 chart. These values of h were found by mod-
ifying the value found using the xcusum.crit function
in the R package spc as shown in the appendix. This
function can be used to find the decision limit
required to produce a specified ARL0. The ARL and
ATS for the Cusum chart is the same since the time
between samples is t¼ 1. The time between samples
for the R and S2 charts is 5, assuming the Cusum, R
and S2 charts have an equal number of measurements
per unit of time.

The ATS0 for the R chart with 3r limits, which is
frequently used in practice, is not matched to the
Cusum chart of vi and is not directly comparable to
the S2 or Cusum charts shown in the Table 3. The
ARL values in the table are not comparable between

the S2 chart based on subgroups and the Cusum chart
based on individuals, but the ATS values are compar-
able. It can be seen that the time to detect either a 20
percent decrease or 50 percent increase in the stand-
ard deviation using the Cusum chart is reduced by
74.5 percent and 27.4 percent respectively over the S2

chart. Though not directly comparable, the ATS or
average time to signal a 50 percent increase in the
standard deviation for the Cusum chart is reduced by
43.5 percent over the R chart with 3r limits that is
frequently used in practice.

Comparing performance of EWMA and Cusum
charts of individual values of vi for Phase II
monitoring of process variability

EWMA charts can also be used to monitor changes in
individual values like vi. The EMMA at time point i is
defined as:

zi ¼ kvi þ 1�kð Þzi�1; [6]

where z0 = 0, and according to Montgomery (2013)
popular values for the smoothing constant k are .05,
.10 and .25. For detecting small shifts in the mean of
vi (corresponding to small shifts in the process stand-
ard deviation), the value k ¼ 0:05 is used.

The control limits for the EWMA chart at time
point i are given by:

LCL ¼ �L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1�kð Þ2i
� �r

[7]

UCL ¼ þL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� 1�kð Þ2i
� �

;

r
[8]

and the value of the control limit multiplier L is
chosen to establish the ARL or ATS. The xewma.crit
function in the R package spc can be used to deter-
mine the value of the multiplier L. R code, in the
appendix, shows how the value obtained from this
function was modified to find the multiplier needed
to produce an ARL0 = ATS0 = 370 to match that of
the Cusum chart shown in Table 3.

Once the values of L were found, the steady state
ARL of the EWMA charts were found using the xew-
ma.ad function in the R package spc. This function
determines the average run length by numerically
solving the ARL integral equation. This function was
used to produce the ATS¼ARL values in column 2
of Table 4, and the R code to do this is shown in
the appendix.

Comparing EWMA ATS with that of the Cusum
chart, it can be seen that the EWMA chart with k ¼

Table 4. Comparison of ATS or ARL for Cusum and EWMA
charts of vi.

EWMA ATS Cusum ATS

% Change k ¼ :05 k�.25
in r L¼ 2.504241 h¼ 8.117839
�20 72.46 80.29
0 370 370
50 20.56 20.29
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:05 is slightly better than the Cusum chart. The time
to detect a 20 percent decrease in the standard devi-
ation using the EWMA chart is reduced by 9.75 per-
cent over the Cusum chart, and the time to detect 50
percent increase is about the same.

Examples

As an example of a Cusum chart to monitor process
variability with individual values, consider the data in
Table 5. This data comes from Summers (2000) and
represents the diameter of spacer holes in surgi-
cal tables.

The specification limits are 0.25 ± 0.01. If the mean
was l ¼ 0:25 and the standard deviation was r ¼
0:0025 then Cp ¼ Cpk ¼ 1:33. A shift of the mean
away from l ¼ 0:25 by more than 0.0025 in either
direction would result in Cpk < 1.0, and an increase
in the standard deviation by more than 50 percent
would also result in Cp<1:0. Therefore, Phase II mon-
itoring could be used to detect changes in the process
mean and standard deviation from the target values of
l ¼ 0:25 and r ¼ 0:0025.

Figure 1 shows the resulting Cusum chart of vi. It
can be seen that the Cusum exceeds the decision
interval at observation 10, but falls back within the
limits at observation 11. It is unlikely that the process
standard deviation would only temporarily change,
and it is known that vi is sensitive to changes in the
process mean as well as the standard deviation. To get
a better understanding of what has changed in the
process, the Cusum chart of the standardized values yi
should also be examined.

Specifying h¼ 4.77 or and k =.5 will result in an
ARL0 of 370, and an ARL for detecting a one standard
deviation in the mean of approximately 10 (See Tables
9.3 and 9.4 Montgomery 2013). The resulting Cusum
chart is shown in Figure 2, and the R code to produce
Figures 1 and 2 is shown in the appendix.

In Figure 2, it can be seen that a sustained increase
in the mean of the standardized values yi is detected
at observation number 9. Since the mean of vi
increases when the mean of yi increases, this is most
likely the reason why the Cusum chart of vi also
briefly showed an out-of-control signal at observation
10. Making the Cusum charts of both yi and vi makes
this clear.

A second example of monitoring the process vari-
ability with individual observations is illustrated using

a randomly generated data set containing 25 values.
The code for generating the data is shown in the
appendix, and with the set.seed(25) command fixed,
re-running the code will regenerate the same data.

The sample mean of the randomly generated data
is �x ¼ 48:99193, and the sample standard deviation is
s¼ 8.280726. Assuming the known in-control mean of
and standard deviation of the process to generate this
data was l¼ 50, and r¼ 5, the data are monitored
with EWMA charts. If the in-control process standard
deviation was 5.0, and the in-control mean was 50.0,
then it is estimated from the random data that a more
than 50 percent increase in the standard deviation has
occurred with about a 1

5th standard deviation decrease
in the mean.

The EWMA charts of yi and vi are shown in Figure
3. In Figure 3, it can be seen that an out-of-control
signal is first shown on the EWMA chart of yi at
observation number 14, but the EWMA immediately
falls back within the control limits at observation 15.
However, the EWMA chart of vi shows a sustained
increase and an out-of-control signal at observation
14 and again at observations 19–22 and 24–25. Since
the standardized values yi are sensitive to changes in
the standard deviation as well as the mean, in the
same way the �X chart is sensitive to an increase in the
process standard deviation, examination of both charts
helps in determining what is out of control. The
EWMA chart of vi seems to show a clearer indication
that the process standard deviation has increased, and
the single out-of-control point on the EWMA of yi
was probably caused by that increase. The R code in
the appendix confirms this fact, since the random
data was generated from a process with mean 50 and
standard deviation 7.5.

Effect of Phase I estimated process parameters
on ARL

When a control chart is set up to detect a change in
the process mean from a value estimated during a
Phase I study, rather than a known value, (Saleh et al.
2016) recommend that a distinction be made between
the conditional ARL and the marginal or uncondi-
tional ARL. They define the conditional ARL as the
ARL of a chart given a specific set of Phase I param-
eter estimates, and the marginal or unconditional
ARL as the conditional ARL averaged over all possible
values of the Phase I estimates.

Table 5. Spacer hole diameters.
Observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Diameter .25 .25 .251 .25 .252 .253 .252 .255 .259 .261 .249 .25 .25 .25 .252

422 J. LAWSON



The distributions of the run length (RL) over all
possible Phase I estimate for both R charts and time-
weighted charts, like the Cusum or EWMA, are wider
than the RL distribution when the parameters (i.e.,
process mean and standard deviation) are known.
When Phase I estimated parameters are used to define
the control chart limits, some extremely long ARL val-
ues can result in Phase II monitoring when the pro-
cess is stable. This appears to be a desirable result of
using Phase I estimated parameters to define the
chart. However, a longer ARL0 is associated with a
longer ARL1 and less sensitivity in detecting changes
in the parameters. In addition, when using Phase I
estimated parameters, ARL0 values that are substan-
tially smaller than the target ARL0 can occur with
non-negligible probability. ARL values less than the
target ARL0 result in more frequent false alarm signals
and is another inevitable negative consequence of
using Phase I estimated parameters.

(Chen 1998) found that when compared to R
charts with a known r, R charts with estimated

probability limits based on a Phase I estimate of r
will signal more often when the process is stable, and
they do not signal as quickly when the process vari-
ability has shifted. He showed that when using sub-
groups of size n¼ 5, and a Phase I sample of m¼ 20
subgroups (typical numbers used in practice), the
marginal ARL (as defined by Saleh et al. 2015)
decreases 11.6 percent when compared to the case
where r is known. He also showed that when the
standard deviation increases by 40 percent, there is a
26.3 percent increase in the marginal ARL1 compared
to the case where r is known.

Diko et al. 2017 found corrected probability based
control limits for the R chart. Using these limits,
rather than the uncorrected probability based limits
used by (Chen 1998), the unconditional in-control
performance will achieve the desired nominal ARL0.
However, the out-of-control ARL1 deteriorates. This
deterioration is most noticeable when the number of
Phase I samples is small (i.e. 20–30 as normally rec-
ommended for R charts) and when the shift in the

Figure 1. Cusum chart of v calculated from diameters of spacer holes.

Figure 2. Cusum chart of y standardized diameter of spacer holes.
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standard deviation is small (r=r0<2:0). (Diko et al.
2017) provide R code in the appendix of their article
to compute the adjusted control limits.

Epprecht, Loureiro, and Chakraborti 2015 discuss
the effect of the amount of Phase I data on the per-
formance of S2 and S control charts, and (Goedhart
et al. 2017) also present a method to determine
adjusted control limits for Shewhart S2 charts. Their
proposed adjustment ensures that a minimum in-con-
trol performance is guaranteed with a specified
probability.

Jones, Champ, and Rigdon 2004 found that the dis-
tribution of the conditional in-control ARL of a
Cusum chart (over all possible values of the Phase I
estimates) was extremely right skewed, and that there
are many values much smaller than the desired ARL0.
This type of ARL distribution will cause a higher false
alarm rate when the process is in-control. Saleh et al.
2015 came to similar conclusions regarding the condi-
tional in-control distribution of the EWMA chart.

To counteract this kind of problem, Gandy and
Kvaloy 2013 proposed that a control chart should be
designed to have at least a specified conditional ARL

with a specified probability. They proposed a method
based on bootstrap samples to find the 90th percentile
of the control limit multiplier to guarantee the condi-
tional ARL to be at least equal to the target ARL0 90
percent of the time. They found that this increase to
the in-control ARL only slightly increased the ARL
for detecting a one standard deviation shift in the pro-
cess mean. Saleh et al. 2016 similarly found bootstrap
adjusted control limits for the two-sided Cusum chart
to guarantee conditional in-control ARL to be at least
a specified value.

The R package spcadjust (Gandy and Kvaloy 2015)
contains the function SPCproperty that computes the

adjusted multiplier ðL�
ffiffiffiffiffiffi
k

2�k

q
Þ shown in Eqs. [7] and

[8] for the two-sided EWMA control limits. When the
process parameters are estimated from a Phase I
study, the SPCproperty function can be used in place

Figure 3. EWMA of random data y (top) v (bottom).

Table 6. Percentiles of conditional ARL0 distribution of the
EWMA of vi with k ¼ :05 and target ARL0 ¼ 370.
Percentile Unadjusted L¼ 2.489686 Adjusted L¼ 3.2774

.10 129.86 477.73

.50 280.02 1762.17

.90 365.87 3064.26
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of the xewma.crit function in the R package spc that
was illustrated in the section “Comparing performance
of EWMA and cusum charts of individual values of vi
for Phase II monitoring of process variability”. An
example of the use of SPCproperty is shown in the R
code in the appendix.

Table 6 shows the percentiles of the in-control
ARL0 distribution determined from 1,000,000 simula-
tions with 100 Phase I samples used to estimate the
process parameters. In this table it can be seen that
for the unadjusted EWMA chart with L¼ 2.489686,
the conditional ARL is less than the target for more
than 90 percent of the users or practitioners, which
will result in many false alarm signals. However, when
using the adjusted value of L¼ 3.2774, the conditional
ARL is greater than the target value for at least 90
percent of the users. Thus, using the adjusted L will
prevent the false alarm signals that result from basing
the chart on Phase I estimated parameters.

Table 7 shows the percentiles of the ARL1 for detect-
ing a 50 percent increase in the standard deviation
determined from 1,000,000 simulations with 100 Phase I
samples used to estimate the process parameters. While
the 50th percentile of the adjusted ARL0 in Table 6 is
6.29 times as large as the unadjusted ARL0, the 50th
percentile of the adjusted ARL1 in Table 7 is only 1.60
times as large as the unadjusted ARL1.

To illustrate the use of an EWMA of vi with cor-
rected limits to detect a change in the process vari-
ability from the Phase I estimated values, consider
again the randomly generated data for the second
example in the section “Examples.” In that example, it
was assumed that the in-control process mean and
standard deviation were known. Here, it is assumed
that the in-control mean and standard deviation are
unknown and are estimated from a Phase I study. The
Phase I data for this example consists m¼ 100 values
randomly generated values from the in-control distri-
bution with l¼ 50 and r¼ 5. The Phase II data was
the same data used in the second example in the sec-
tion “Examples” and was randomly generated from
the distribution with l¼ 50 and r ¼ 7:5 using set.-
seed(25). This data represents a 50 percent increase in
the process standard deviation over the distribution
that generated the Phase I sample.

The standardized values yi were created by sub-
tracting the Phase I estimated mean, �x, and dividing
by the Phase I estimated standard deviation, s. The vi
values were calculated from yi. Next, the adjusted con-
trol limit multiplier L for the EWMA charts of yi and
vi were determined using the SPCProperty function in
the R package spcadjust. Finally, EWMA charts of yi
and vi were made. The R code to do all this is shown
in the appendix. Running the code produces EWMA
charts that look very similar to those shown in Figure
3. The control limit multipliers are slightly larger than
those used to create Figure 3, but the conclusions
remain the same. Therefore, if the in-control process
mean and standard deviation are unknown and are
estimated from 100 or more Phase I samples, the
EWMA charts of the individual values yi and vi can
still detect a 50 percent increase in the standard devi-
ation within 20–25 observations.

Conclusions and recommendations

The conclusions of this study show the Cusum and
EWMA charts of individual values will detect changes
(on the order of 50 percent) in the process standard
deviation more quickly (based on the ATS) than
either the standard R chart often used in practice or
the more efficient S2 chart or the equivalent S chart.

The two-sided EWMA chart with k ¼ :05 and
L¼ 2.489686 was shown to be slightly better than the
Cusum chart recommended by Hawkins (1981), and
code is shown for adjusting the control limit multi-
plier L to guarantee a target value of ARL0 when the
in-control process mean and standard deviation must
be estimated from a Phase I study.

In some processes like continuous chemical proc-
esses, it is inconvenient or impossible to collect
rational subgroups of data needed for a standard R or
S2 chart. In other cases, the cost of sampling individ-
ual observations is no different from the cost of sam-
pling subgroups of observations when the number of
observations per unit of time is the same. Based on
the results of this study, in either of these situations,
it is recommended that Phase II monitoring be con-
ducted using EWMA charts of individual standardized
values yi and vi to reduce the time to detect changes
in the process.

If it is more convenient or cost effective to sample
in rational subgroups during Phase II monitoring,
EWMA charts of the subgroup means and the
EWMA chart of the log transformation of the sub-
group sample variances recommended by Crowder
and Hamilton (1992) will both detect small changes in

Table 7. Percentiles of conditional ARL1 distribution of the
EWMA of vi for a 50 percent increase in r with k ¼ :05 and
target ARL0 ¼ 370.
Percentile Unadjusted L¼ 2.489686 Adjusted L¼ 3.2774

.10 16.14 24.39

.50 20.92 33.54

.90 29.38 52.24
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the process faster than the �X and S2 charts. Therefore,
in this situation it is recommended that EWMA charts
again be used in Phase II monitoring.
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Appendix – R code from the article

The block of R code below was used to calculate the ARL values for the Cusum chart shown in Table 2

library(spc)
xcusum.arl(k=.25,h=6,mu=-.2486,sided="two")
xcusum.arl(k=.25,h=6,mu=.52923,sided="two")
xcusum.arl(k=.25,h=6,mu=.71548,sided="two")

The block of R code below was used to calculate the ARL of the R chart with 3r limits in Table 3.

library(qcc)
sdata<-rnorm(100,0,1)
# Get ARL for R chart for detecting 50
# change in sigma when n=5
robj<-qcc(sdata,type="R",sizes=5,nsigmas=3.0,plot¼FALSE)
beta<-oc.curves.R(robj, n=5, c=1.5)
ARL0<-1/(1-beta[1,1])
ARL1<-1/(1-beta[11,1])

In this code sdata is simulated random normal data. It is needed as the first argument for the qcc function that creates a
qcc object robj. A qcc object is needed as first argument to the oc.curves.R function (although the specific value of the first
argument for the qcc function will not affect the result of the oc.curves.R call). The other two arguments are the subgroup
size (5) and the multiplier (1.5) of the standard deviation to be detected. The ARL calculated by this code is 7.198. This
code, with changes the multiplier, was used to produce the third column in Table 3. Note that the ARL for detecting a
decrease in the standard deviation using an R chart with subgroups of size 5 is infinity because the range Ri can never fall
below the lower control limit of zero.

The block of R code below was used to calculate the ARL of the S2 chart with probability limits to produce an ARL =
74.5 resulting in an ATS = 370 in the fourth column Table 3.

# Sb2 ARL0
ARL<-74.5
alpha<-1/74.5
ll<-qchisq(alpha/2,4)
ul<-qchisq((1-alpha/2),4)
# check
1/(1-(pchisq(ul,4)-pchisq(ll,4)))
# 20
mult<-(1/.8)b5E;2
ARL1<-1/(1-(pchisq(mult�ul,4)-pchisq(mult�ll,4)))
# 50
mult<-(1/1.5)b2
ARL1<-1/(1-(pchisq(mult�ul,4)-pchisq(mult�ll,4)))

The block of code below shows how the values of h for the Cusum chart in Tables 3 and 4 were found by modifying the
value found using the xcusum.crit function in the R package spc, and how the Cusum ARL was calculated using the xcusu-
m.ad function in the R package spc.

# Cusum ARL0
library(spc)
h0<-xcusum.crit(k=.25,L0=370,mu=0,sided="two")
h0<-h0þ.10955
ARL0<-xcusum.ad(k=.25,h¼h0,mu0=0,mu1=0,sided="two")
# Cusum ARL1
# 20
ARL1<-xcusum.ad(k=.25,h¼h0,mu0=0,mu1=-.24860,sided="t")
# 50
ARL1<-xcusum.ad(k=.25,h¼h0,mu0=0,mu1=.592258)

The block of code below shows how the control limits multiplier L for the EWMA chart in Table 4 was found using the xew-
ma.crit function in the R package spc and how the ARL for the EWMA chart was found using the xewma.crit function in the R
package spc.
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# Get EWMA ARL¼ATS for Table 4
library(spc)
cv<-xewma.crit(l=.05,L0=370,mu0=0,sided="two")
cv<-cvþ.014555
# ARL0
xewma.ad(l=.05,c¼cv, mu0=0, mu1=0,sided="two")
# 20
xewma.ad(l=.05,c¼cv, mu0=0, mu1=-.2486026,sided="two")
# 50
xewma.ad(l=.05,c¼cv, mu0=0, mu1=.592298,sided="two")

The block of code below was used to produce the graphs in the first example.

# Example 1
diameter<-

c(.25,.25,.251,.25,.252,.253,.252,.255,.259,.261,.249,.250,.250,.250,
.252)
mu<-.25
sigma<-.0025
y<-(diameter-mu)/sigma
v<-(sqrt(abs(y))-.822179)/.3491508
library(qcc)
# Figure 1, se.shift=.5 specifies k=.25cusum(v,center=0,std.-
dev=1,decision.interval=8.008289,se.shift=.5)library(qcc)

# Figure 2
cusum(y,center=0,std.dev=1,decision.interval=4.77,se.shift=1)

The block of code below was used to produce the graphs in the second example. In this example it is assumed the in-
control process mean and standard deviation were known.

# Example 2 with simulated data
set.seed(25)
# random data from normal N(50, 7.5)
x<-rnorm(25,50,7.5)
# standardize assuming sigma=5, mu=50
y<-(x-50)/5
# calculate v
v<-(sqrt(abs(y))-.822179)/.3491508
library(qcc)
EWMA <- ewma(y, center=0, std.dev=1,lambda=.2, nsigmas=2.86,
plot¼FALSE)
EWMA$statistics <- rep(NA,length(EWMA$statistics))
plot(EWMA,ylim¼c(-2,2))
EWMA <- ewma(v, center=0, std.dev=1,lambda=.05, nsigmas=2.489686,
plot¼FALSE)
EWMA$statistics <- rep(NA, length(EWMA$statistics))
plot(EWMA, ylim¼c(-1,1))

The arguments center and std.dev represent the known in-control process mean and standard deviation of yi. The
EWMA parameters k ¼ :2 and L¼ 2.86 are defined in the first function call with the arguments lambda=.2 and nsigmas =
2.86. The second EWMA with k ¼ :05 and L¼ 2.489686 are defined in the second function call with lambda=.05 and nsig-
mas = 2.489686.

The block of code below illustrates the use of the SPCProperty function in the R package spcadjust to produce adjusted
control limit multipliers for the two-sided EWMA chart.

set.seed(52)
X<-rnorm(100,50,5)set.seed(99)
X<-rnorm(100)
# This is simulated Phase I in-control data, it should be replaced with
actual Phase I data
# if available.
library(spcadjust)
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chart <- new("SPCEWMA",model¼SPCModelNormal(Delta=.0),lambda=.05)
xihat <- xiofdata(chart,X)
cal <- SPCproperty(data¼X,nrep=1000,property="calARL",chart¼chart,
params¼list(target=370),quiet¼TRUE)

In the code above, the argument Delta = 0 is the standard deviation shift in the mean. In this case 0 means you are inter-
ested in adjusting the limit multiplier for the ARL0. The lambda =.05 is the EWMA smoothing parameter. In the
SPCProperty function call, data¼X specifies the vector of Phase I data, nrep = 1000 specifies the recommended number of
bootstrap samples, and target = 370 specifies the target value of ARL0. The output of the function call is in the list variable
cal which contains the adjusted value of L�

ffiffiffiffiffiffi
k

2�k

q
, from which the adjusted value of L can be determined. For example,

running this code resulted in the adjusted value in cal =.5248, and solving for L ¼ :5248=ð
ffiffiffiffiffiffiffiffiffi
:05

2�:05

q
Þ ¼ 3:2774. This code takes

a few minutes to run because it is making 1000 bootstrap estimates based on the Phase I data.
The block of code below repeats the second example without assuming the in-control process mean and standard devi-

ation were known. In this case random data from a normal distribution with mean l¼ 50, and standard deviation r¼ 5
were simulated to represent in-control data from a Phase I study.

# Create simulated Phase I data
library(qcc)
set.seed(52)
x1<-rnorm(100,50,5)
muhat<-mean(x1)
sighat<-sd(x1)
y1<-(x1-muhat)/sighat
v1<-(sqrt(abs(y1))-.822179)/.3491508
library(spcadjust)
# Calculate the adjusted L for the EWMA chart of y; Note: it takes a few
minutes for this section
# of code to run
charty <- new("SPCEWMA",model¼SPCModelNormal(Delta=.0),lambda=.2)
xihat <- xiofdata(charty,y1)
cy <- SPCproperty(data¼y1,nrep
=1000,property="calARL",chart¼charty,params¼list(target=370),quiet-
¼TRUE)
Ly<-cy@res/(sqrt(.2/(2-.2)))
# Calculate the adjusted L for the EWMA chart of v; Note: it takes a few
minutes for this section
# of code to run
chartv <- new("SPCEWMA",model¼SPCModelNormal(Delta=.0),lambda=.05)
xihat <- xiofdata(chartv,v1)
cv <- SPCproperty(data¼y1,nrep
=1000,property="calARL",chart¼chartv,params¼list(target=370),quiet-
¼TRUE)
Lv<-cy@res/(sqrt(.2/(2-.2)))
# Here is the same simulated Phase II data used in the second example in Section
5set.seed(25)
# random data from normal N(50, 7.5)x<-rnorm(25,50,7.5)
# standardize using estimated mu and sigmay<-(x-muhat)/sighat
# calculate vv<-(sqrt(abs(y))-.822179)/.3491508
# adjusted charts, the value of L¼nsigmas for these two charts was obtained
using the
# SPCProperty function
EWMA <- ewma(y, center=0, std.dev=1,lambda=.2, nsigmas¼Ly, plot¼FALSE)
EWMA$statistics <- rep(NA,length(EWMA$statistics))plot(EWMA,ylim¼c(-
2,2))
EWMA <- ewma(v, center=0, std.dev=1,lambda=.05, nsigmas¼Lv,
plot¼FALSE)
EWMA$statistics <- rep(NA,length(EWMA$statistics))
plot(EWMA, ylim¼c(-1,1))
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